Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8102, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582921

RESUMO

Lung cancer is a major public health issue and heavy burden in China and worldwide due to its high incidence and mortality without effective treatment. It's imperative to develop new treatments to overcome drug resistance. Natural products from food source, given their wide-ranging and long-term benefits, have been increasingly used in tumor prevention and treatment. This study revealed that Hibiscus manihot L. flower extract (HML) suppressed the proliferation and migration of A549 cells in a dose and time dependent manner and disrupting cell cycle progression. HML markedly enhanced the accumulation of ROS, stimulated the dissipation of mitochondrial membrane potential (MMP) and that facilitated mitophagy through the loss of mitochondrial function. In addition, HML induced apoptosis by activation of the PTEN-P53 pathway and inhibition of ATG5/7-dependent autophagy induced by PINK1-mediated mitophagy in A549 cells. Moreover, HML exert anticancer effects together with 5-FU through synergistic effect. Taken together, HML may serve as a potential tumor prevention and adjuvant treatment for its functional attributes.


Assuntos
Hibiscus , Neoplasias Pulmonares , Manihot , Humanos , Células A549 , Hibiscus/metabolismo , Manihot/metabolismo , Autofagia , Neoplasias Pulmonares/patologia , Flores/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166960, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37979225

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease of unknown etiology. The emerging evidence demonstrates that metabolic homeostatic imbalance caused by repetitive injuries of the alveolar epithelium is the potential pathogenesis of IPF. Proteomic analysis identified that Acetyl-CoA synthetase short chain family member 3 (ACSS3) expression was decreased in IPF patients and mice with bleomycin-induced fibrosis. ACSS3 participated in lipid and carbohydrate metabolism. Increased expression of ACSS3 downregulated carnitine palmitoyltransferase 1A (CPT-1A) and resulted in the accumulation of lipid droplets, while enhanced glycolysis which led to an increase in extracellular lactic acid levels in A549 cells. ACSS3 increases the production of succinyl-CoA through propionic acid metabolism, and decreases the generation of acetyl-CoA and ATP in alveolar epithelial cells. Overexpression of Acss3 inhibited the excessive deposition of ECM and attenuated the ground-glass opacity which determined by micro-CT in vivo. In a nutshell, our findings demonstrate that ACSS3 decreased the fatty acid oxidation through CPT1A deficiency and enhanced anaerobic glycolysis, this metabolic reprogramming deactivate the alveolar epithelial cells by lessen mitochondrial fission and fusion, increase of ROS production, suppression of mitophagy, promotion of apoptosis, suggesting that ACSS3 might be potential therapeutic target in pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Humanos , Camundongos , Acetilcoenzima A , Células Epiteliais/metabolismo , Homeostase , Proteômica , Fibrose Pulmonar/metabolismo , Acetato-CoA Ligase/metabolismo
3.
Front Mol Neurosci ; 16: 1280639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965040

RESUMO

Background: Ferroptosis is a newly defined form of programmed cell death and plays an important role in Alzheimer's disease (AD) pathology. This study aimed to integrate bioinformatics techniques to explore biomarkers to support the correlation between ferroptosis and AD. In addition, further investigation of ferroptosis-related biomarkers was conducted on the transcriptome characteristics in the asymptomatic AD (AsymAD). Methods: The microarray datasets GSE118553, GSE132903, GSE33000, and GSE157239 on AD were downloaded from the GEO database. The list of ferroptosis-related genes was extracted from the FerrDb website. Differentially expressed genes (DEGs) were identified by R "limma" package and used to screen ferroptosis-related hub genes. The random forest algorithm was used to construct the diagnostic model through hub genes. The immune cell infiltration was also analyzed by CIBERSORTx. The miRNet and DGIdb database were used to identify microRNAs (miRNAs) and drugs which targeting hub genes. Results: We identified 18 ferroptosis-related hub genes anomalously expressed in AD, and consistent expression trends had been observed in both AsymAD The random forest diagnosis model had good prediction results in both training set (AUC = 0.824) and validation set (AUC = 0.734). Immune cell infiltration was analyzed and the results showed that CD4+ T cells resting memory, macrophages M2 and neutrophils were significantly higher in AD. A significant correlation of hub genes with immune infiltration was observed, such as DDIT4 showed strong positive correlation with CD4+ T cells memory resting and AKR1C2 had positive correlation with Macrophages M2. Additionally, the microRNAs (miRNAs) and drugs which targeting hub genes were screened. Conclusion: These results suggest that ferroptosis-related hub genes we screened played a part in the pathological progression of AD. We explored the potential of these genes as diagnostic markers and their relevance to immune cells which will help in understanding the development of AD. Targeting miRNAs and drugs provides new research clues for preventing the development of AD.

4.
Front Immunol ; 14: 1281687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022588

RESUMO

Introduction: Acute myeloid leukemia (AML) is a type of blood cancer that is identified by the unrestricted growth of immature myeloid cells within the bone marrow. Despite therapeutic advances, AML prognosis remains highly variable, and there is a lack of biomarkers for customizing treatment. RNA N6-methyladenosine (m6A) modification is a reversible and dynamic process that plays a critical role in cancer progression and drug resistance. Methods: To investigate the m6A modification patterns in AML and their potential clinical significance, we used the AUCell method to describe the m6A modification activity of cells in AML patients based on 23 m6A modification enzymes and further integrated with bulk RNA-seq data. Results: We found that m6A modification was more effective in leukemic cells than in immune cells and induced significant changes in gene expression in leukemic cells rather than immune cells. Furthermore, network analysis revealed a correlation between transcription factor activation and the m6A modification status in leukemia cells, while active m6A-modified immune cells exhibited a higher interaction density in their gene regulatory networks. Hierarchical clustering based on m6A-related genes identified three distinct AML subtypes. The immune dysregulation subtype, characterized by RUNX1 mutation and KMT2A copy number variation, was associated with a worse prognosis and exhibited a specific gene expression pattern with high expression level of IGF2BP3 and FMR1, and low expression level of ELAVL1 and YTHDF2. Notably, patients with the immune dysregulation subtype were sensitive to immunotherapy and chemotherapy. Discussion: Collectively, our findings suggest that m6A modification could be a potential therapeutic target for AML, and the identified subtypes could guide personalized therapy.


Assuntos
Variações do Número de Cópias de DNA , Leucemia Mieloide Aguda , Humanos , RNA-Seq , Análise da Expressão Gênica de Célula Única , Prognóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Fatores de Transcrição , Resistência a Medicamentos , Proteína do X Frágil de Retardo Mental
5.
Integr Zool ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853557

RESUMO

Bats, members of the Chiroptera order, rank as the second most diverse group among mammals. Recent molecular systematic studies on bats have successfully classified 21 families within two suborders: Yinpterochiroptera and Yangochiroptera. Nevertheless, the phylogeny within these 21 families has remained a subject of controversy. In this study, we have employed a balanced approach to establish a robust family-level phylogenetic hypothesis for bats, utilizing a more comprehensive molecular dataset. This dataset includes representative species from all 21 bat families, resulting in a reduced level of missing genetic information. The resulting phylogenetic tree comprises 21 lineages that are strongly supported, each corresponding to one of the bat families. Our findings support to place the Emballonuroidea superfamily as the basal lineage of Yangochiroptera, and that Myzopodidae should be situated as a basal lineage of Emballonuroidea, forming a sister relationship with the clade consisting of Nycteridae and Emballonuridae. Finally, we have conducted dating analyses on this newly resolved phylogenetic tree, providing divergence times for each bat family. Collectively, our study has employed a relatively comprehensive molecular dataset to establish a more robust phylogeny encompassing all 21 bat families. This improved phylogenetic framework will significantly contribute to our understanding of evolutionary processes, ecological roles, disease dynamics, and biodiversity conservation in the realm of bats.

6.
Curr Zool ; 69(5): 620-630, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37637321

RESUMO

Cooperative breeding is a sophisticated altruistic social behavior that helps social animals to adapt to harsh environments. The Tibetan ground tit, Pseudopodoces humilis, is a high-altitude bird endemic to the Tibetan plateau. Recently, it has become an exciting system for studying the evolution of facultative cooperative breeding. To test for molecular adaptations associated with cooperative breeding, we resequenced the whole genome of ground tits from 6 wild populations that display remarkable variation in the frequency of cooperative breeding. Population structure analyses showed that the 6 populations were divided into 4 lineages, which is congruent with the major geographical distribution of the sampling sites. Using genome-wide selective sweep analysis, we identified putative positively selected genes (PSGs) in groups of tits that displayed high and low cooperative breeding rates. The total number of PSGs varied from 146 to 722 in high cooperative breeding rate populations, and from 272 to 752 in low cooperative breeding rate populations. Functional enrichment analysis of these PSGs identified several significantly enriched ontologies related to oxytocin signaling, estrogen signaling, and insulin secretion. PSGs involved in these functional ontologies suggest that molecular adaptations in hormonal regulation may have played important roles in shaping the evolution of cooperative breeding in the ground tit. Taken together, our study provides candidate genes and functional ontologies involved in molecular adaptations associated with cooperative breeding in Tibetan ground tits, and calls for a better understanding of the genetic roles in the evolution of cooperative breeding.

7.
Am J Respir Cell Mol Biol ; 69(4): 456-469, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402274

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fatal interstitial lung disease without an effective cure. Herein, we explore the role of 3,5,3'-triiodothyronine (T3) administration on lung alveolar regeneration and fibrosis at the single-cell level. T3 supplementation significantly altered the gene expression in fibrotic lung tissues. Immune cells were rapidly recruited into the lung after the injury; there were much more M2 macrophages than M1 macrophages in the lungs of bleomycin-treated mice; and M1 macrophages increased slightly, whereas M2 macrophages were significantly reduced after T3 treatment. T3 enhanced the resolution of pulmonary fibrosis by promoting the differentiation of Krt8+ transitional alveolar type II epithelial cells into alveolar type I epithelial cells and inhibiting fibroblast activation and extracellular matrix production potentially by regulation of Nr2f2. In addition, T3 regulated the crosstalk of macrophages with fibroblasts, and the Pros1-Axl signaling axis significantly facilitated the attenuation of fibrosis. The findings demonstrate that administration of a thyroid hormone promotes alveolar regeneration and resolves fibrosis mainly by regulation of the cellular state and cell-cell communication of alveolar epithelial cells, macrophages, and fibroblasts in mouse lungs in comprehensive ways.


Assuntos
Fibrose Pulmonar Idiopática , Camundongos , Animais , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Fibrose , Bleomicina/farmacologia , Fibroblastos/metabolismo , Hormônios Tireóideos/metabolismo , Análise de Sequência de RNA
8.
Nat Commun ; 14(1): 4105, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433770

RESUMO

Mitochondria are the key organelles for sensing oxygen, which is consumed by oxidative phosphorylation to generate ATP. Lysosomes contain hydrolytic enzymes that degrade misfolded proteins and damaged organelles to maintain cellular homeostasis. Mitochondria physically and functionally interact with lysosomes to regulate cellular metabolism. However, the mode and biological functions of mitochondria-lysosome communication remain largely unknown. Here, we show that hypoxia remodels normal tubular mitochondria into megamitochondria by inducing broad inter-mitochondria contacts and subsequent fusion. Importantly, under hypoxia, mitochondria-lysosome contacts are promoted, and certain lysosomes are engulfed by megamitochondria, in a process we term megamitochondria engulfing lysosome (MMEL). Both megamitochondria and mature lysosomes are required for MMEL. Moreover, the STX17-SNAP29-VAMP7 complex contributes to mitochondria-lysosome contacts and MMEL under hypoxia. Intriguingly, MMEL mediates a mode of mitochondrial degradation, which we termed mitochondrial self-digestion (MSD). Moreover, MSD increases mitochondrial ROS production. Our results reveal a mode of crosstalk between mitochondria and lysosomes and uncover an additional pathway for mitochondrial degradation.


Assuntos
Lisossomos , Mitocôndrias , Humanos , Hipóxia , Oxigênio , Digestão
10.
Sci Adv ; 9(18): eadd0141, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146151

RESUMO

Bats have been identified as natural reservoir hosts of several zoonotic viruses, prompting suggestions that they have unique immunological adaptations. Among bats, Old World fruit bats (Pteropodidae) have been linked to multiple spillovers. To test for lineage-specific molecular adaptations in these bats, we developed a new assembly pipeline to generate a reference-quality genome of the fruit bat Cynopterus sphinx and used this in comparative analyses of 12 bat species, including six pteropodids. Our results reveal that immunity-related genes have higher evolutionary rates in pteropodids than in other bats. Several lineage-specific genetic changes were shared across pteropodids, including the loss of NLRP1, duplications of PGLYRP1 and C5AR2, and amino acid replacements in MyD88. We introduced MyD88 transgenes containing Pteropodidae-specific residues into bat and human cell lines and found evidence of dampened inflammatory responses. By uncovering distinct immune adaptations, our results could help explain why pteropodids are frequently identified as viral hosts.


Assuntos
Quirópteros , Vírus , Animais , Humanos , Quirópteros/genética , Filogenia , Evolução Molecular , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Genoma , Vírus/genética
11.
Mol Cell Proteomics ; 22(4): 100524, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870568

RESUMO

The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by data-independent acquisition using MS. Differentiated proteins in sera distinguished patients with IPF into three subgroups in signal pathways and overall survival. Aging-associated signatures by weighted gene correlation network analysis coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. Expression of LDHA and CCT6A, which was associated with glucose metabolic reprogramming, was correlated with high serum lactic acid content in patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished patients with IPF from healthy individuals with an area under the curve of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables an understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.


Assuntos
Fibrose Pulmonar Idiopática , Proteômica , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Proteínas Sanguíneas , Biomarcadores , Chaperonina com TCP-1
12.
Proc Natl Acad Sci U S A ; 120(8): e2218183120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780530

RESUMO

Vertebrate Tas2r taste receptors detect bitter compounds that are potentially poisonous. Previous studies found substantial variation in the number of Tas2r genes across vertebrates, with some frog species carrying the largest number. Peculiar among vertebrates, frogs undergo metamorphosis, often associated with a dietary shift between tadpoles and adults. A possible explanation for the large size of frog Tas2r families could be that distinct sets of Tas2r genes are required for tadpoles and adults, suggesting differential expression of Tas2r genes between tadpoles and adults. To test this hypothesis, we first examined 20 amphibian genomes and found that amphibians generally possess more Tas2r genes than do other vertebrate clades. We next focused on the American bullfrog (Lithobates catesbeianus) to examine the expression of its Tas2r genes in herbivorous tadpoles and insectivorous adult frogs. We report that close to one fifth of its 180 Tas2r genes are differentially expressed (22 genes enriched in adults and 11 in tadpoles). Tuning properties were determined for a subset of differentially expressed genes by a cell-based functional assay, with the adult-enriched Tas2r gene set covering a larger range of ligands compared to the tadpole-enriched subset. These results suggest a role of Tas2r genes in the ontogenetic dietary shift of frogs and potentially initiate a new avenue of ontogenetic analysis of diet-related genes in the animal kingdom.


Assuntos
Receptores Acoplados a Proteínas G , Paladar , Animais , Paladar/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Filogenia , Evolução Molecular , Anuros/genética , Anuros/metabolismo , Dieta
13.
Sci Rep ; 13(1): 1225, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681777

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease that causes irreversible damage to lung tissue characterized by excessive deposition of extracellular matrix (ECM) and remodeling of lung parenchyma. The current diagnosis of IPF is complex and usually completed by a multidisciplinary team including clinicians, radiologists and pathologists they work together and make decision for an effective treatment, it is imperative to introduce novel practical methods for IPF diagnosis. This study provided a new diagnostic model of idiopathic pulmonary fibrosis based on machine learning. Six genes including CDH3, DIO2, ADAMTS14, HS6ST2, IL13RA2, and IGFL2 were identified based on the differentially expressed genes in IPF patients compare to healthy subjects through a random forest classifier with the existing gene expression databases. An artificial neural network model was constructed for IPF diagnosis based these genes, and this model was validated by the distinctive public datasets with a satisfactory diagnostic accuracy. These six genes identified were significant correlated with lung function, and among them, CDH3 and DIO2 were further determined to be significantly associated with the survival. Putting together, artificial neural network model identified the significant genes to distinguish idiopathic pulmonary fibrosis from healthy people and it is potential for molecular diagnosis of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Pulmão , Sulfotransferases
14.
Parasit Vectors ; 16(1): 37, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707856

RESUMO

BACKGROUND: Understanding the interactions between bat flies and host bats offer us fundamental insights into the coevolutionary and ecological processes in host-parasite relationships. Here, we investigated the identities, host specificity, and patterns of host association of bat flies in a subtropical region in East Asia, which is an understudied region for bat fly research. METHODS: We used both morphological characteristics and DNA barcoding to identify the bat fly species found on 11 cavernicolous bat species from five bat families inhabiting Hong Kong. We first determined the phylogenetic relationships among bat fly species. Then, we elucidated the patterns of bat-bat fly associations and calculated the host specificity of each bat fly species. Furthermore, we assembled the mitogenomes of three bat fly species from two families (Nycteribiidae and Streblidae) to contribute to the limited bat fly genetic resources available. RESULTS: We examined 641 individuals of bat flies and found 20 species, of which many appeared to be new to science. Species of Nycteribiidae included five Nycteribia spp., three Penicillidia spp., two Phthiridium spp., one Basilia sp., and one species from a hitherto unknown genus, whereas Streblidae included Brachytarsina amboinensis, three Raymondia spp., and four additional Brachytarsina spp. Our bat-bat fly association network shows that certain closely related bat flies within Nycteribiidae and Streblidae only parasitized host bat species that are phylogenetically more closely related. For example, congenerics of Raymondia only parasitized hosts in Rhinolophus and Hipposideros, which are in two closely related families in Rhinolophoidea, but not other distantly related co-roosting species. A wide spectrum of host specificity of these bat fly species was also revealed, with some bat fly species being strictly monoxenous, e.g. nycteribiid Nycteribia sp. A, Phthiridium sp. A, and streblid Raymondia sp. A, while streblid B. amboinensis is polyxenous. CONCLUSIONS: The bat fly diversity and specificity uncovered in this study have shed light on the complex bat-bat fly ecology in the region, but more bat-parasite association studies are still needed in East Asian regions like China as a huge number of unknown species likely exists. We highly recommend the use of DNA barcoding to support morphological identification to reveal accurate host-ectoparasite relationships for future studies.


Assuntos
Quirópteros , Dípteros , Animais , Ásia Oriental , Dípteros/genética , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Filogenia
15.
Integr Zool ; 18(3): 493-505, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36049759

RESUMO

Understanding how natural selection shapes unique traits in mammals is a central topic in evolutionary biology. The mammalian order Chiroptera (bats) is attractive for biologists as well as the general public due to their specific traits of extraordinary immunity and inverted resting posture. However, genomic resources for bats that occupy key phylogenetic positions are not sufficient, which hinders comprehensive investigation of the molecular mechanisms underpinning the origin of specific traits in bats. Here, we sequenced the transcriptomes of 5 bats that are phylogenetically divergent and occupy key positions in the phylogenetic tree of bats. In combination with the available genomes of 19 bats and 21 other mammals, we built a database consisting of 10 918 one-to-one ortholog genes and reconstructed phylogenetic relationships of these mammals. We found that genes related to immunity, bone remodeling, and cardiovascular system are targets of natural selection along the ancestral branch of bats. Further analyses revealed that the T cell receptor signaling pathway involved in immune adaptation is specifically enriched in bats. Moreover, molecular adaptations of bone remodeling, cardiovascular system, and balance sensing may help to explain the reverted resting posture in bats. Our study provides valuable transcriptome resources, enabling us to tentatively identify genetic changes associated with bat-specific traits. This work is among the first to advance our understanding of the molecular underpinnings of inverted resting posture in bats, which could provide insight into healthcare applications such as hypertension in humans.


Assuntos
Quirópteros , Humanos , Animais , Quirópteros/genética , Transcriptoma , Filogenia , Mamíferos/genética , Perfilação da Expressão Gênica , Postura , Evolução Molecular
16.
Nature ; 612(7941): 748-757, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477529

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.


Assuntos
Enzima de Conversão de Angiotensina 2 , Quirópteros , Coronavírus da Síndrome Respiratória do Oriente Médio , Receptores Virais , Internalização do Vírus , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virologia , Microscopia Crioeletrônica , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Zoonoses Virais
17.
Mol Biol Evol ; 38(10): 4562-4572, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240186

RESUMO

Sensory systems are attractive evolutionary models to address how organisms adapt to local environments that can cause ecological speciation. However, tests of these evolutionary models have focused on visual, auditory, and olfactory senses. Here, we show local adaptation of bitter taste receptor genes in two neighboring populations of a wild mammal-the blind mole rat Spalax galili-that show ecological speciation in divergent soil environments. We found that basalt-type bitter receptors showed higher response intensity and sensitivity compared with chalk-type ones using both genetic and cell-based functional analyses. Such functional changes could help animals adapted to basalt soil select plants with less bitterness from diverse local foods, whereas a weaker reception to bitter taste may allow consumption of a greater range of plants for animals inhabiting chalk soil with a scarcity of food supply. Our study shows divergent selection on food resources through local adaptation of bitter receptors, and suggests that taste plays an important yet underappreciated role in speciation.


Assuntos
Spalax , Adaptação Fisiológica/genética , Animais , Especiação Genética , Mamíferos , Spalax/genética , Paladar/genética
18.
Mol Ecol ; 30(23): 6449-6467, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34146369

RESUMO

Comprising more than 1,400 species, bats possess adaptations unique among mammals including powered flight, unexpected longevity, and extraordinary immunity. Some of the molecular mechanisms underlying these unique adaptations includes DNA repair, metabolism and immunity. However, analyses have been limited to a few divergent lineages, reducing the scope of inferences on gene family evolution across the Order Chiroptera. We conducted an exhaustive comparative genomic study of 37 bat species, one generated in this study, encompassing a large number of lineages, with a particular emphasis on multi-gene family evolution across immune and metabolic genes. In agreement with previous analyses, we found lineage-specific expansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, including genes involved in the regulation of inflammasome pathways such as epithelial defence receptors, the natural killer gene complex and the interferon-gamma induced pathway. Gene set enrichment analyses revealed genes lost in bats are involved in defence response against pathogen-associated molecular patterns and damage-associated molecular patterns. Gene family evolution and selection analyses indicate bats have evolved fundamental functional differences compared to other mammals in both innate and adaptive immune system, with the potential to enhance antiviral immune response while dampening inflammatory signalling. In addition, metabolic genes have experienced repeated expansions related to convergent shifts to plant-based diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats had evolved a unique set of immune adaptations whose functional implications remain to be explored.


Assuntos
Quirópteros , Adaptação Fisiológica/genética , Animais , Quirópteros/genética , Evolução Molecular , Genoma , Genômica , Humanos , Filogenia
19.
Mol Biol Evol ; 38(9): 3649-3663, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33944941

RESUMO

Obligate scavenging on the dead and decaying animal matter is a rare dietary specialization that in extant vertebrates is restricted to vultures. These birds perform essential ecological services, yet many vulture species have undergone recent steep population declines and are now endangered. To test for molecular adaptations underlying obligate scavenging in vultures, and to assess whether genomic features might have contributed to their population declines, we generated high-quality genomes of the Himalayan and bearded vultures, representing both independent origins of scavenging within the Accipitridae, alongside a sister taxon, the upland buzzard. By comparing our data to published sequences from other birds, we show that the evolution of obligate scavenging in vultures has been accompanied by widespread positive selection acting on genes underlying gastric acid production, and immunity. Moreover, we find evidence of parallel molecular evolution, with amino acid replacements shared among divergent lineages of these scavengers. Our genome-wide screens also reveal that both the Himalayan and bearded vultures exhibit low levels of genetic diversity, equating to around a half of the mean genetic diversity of other bird genomes examined. However, demographic reconstructions indicate that population declines began at around the Last Glacial Maximum, predating the well-documented dramatic declines of the past three decades. Taken together, our genomic analyses imply that vultures harbor unique adaptations for processing carrion, but that modern populations are genetically depauperate and thus especially vulnerable to further genetic erosion through anthropogenic activities.


Assuntos
Falconiformes , Animais , Aves/genética , Evolução Molecular , Falconiformes/genética , Variação Genética , Genoma
20.
J Steroid Biochem Mol Biol ; 210: 105875, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33746111

RESUMO

XX sex reversal, also called XX disorders of sex development (XX-DSD), is a condition affecting the development of the gonads or genitalia, and is relatively common in pigs. However, its genetic etiology and transcriptional regulation mechanism in the hypothalamic-pituitary-gonadal axis (HPGA) remain mostly unknown. XX-DSD (SRY-negative) pigs and normal sows were selected by external genitalia observation. The hypothalamus, which is the integrated center of the HPGA was sampled for whole-transcriptome RNA-seq. The role of DEmiRNA was validated by its overexpression and knockdown in vitro. A total of 1,258 lncRNAs, 1,086 mRNAs, and 61 microRNAs differentially expressed in XX-DSD pigs compared with normal female pigs. Genes in the hormone biosynthesis and secretion pathway significantly up-regulated, and the up-regulation of GNRH1, KISS1 and AVP may associate with the abnormal secretion of GnRH. We also predicted the lncRNA-miRNA-mRNA co-expression triplets and constructed three competing endogenous RNA (ceRNA) potentially associated with XX-DSD. Functional enrichment studies suggested that TCONS_00340886, TCONS_00000204 and miR-181a related to GnRH secretion. Further, miR-181a inhibitor up-regulated GNRH1, PAK6, and CAMK4 in the GT1-7 cells. Conversely, transfection of miR-181a mimics obtained the opposite trends. The expression levels of FSHR, LHR, ESR1 and ESR2 were significantly higher in XX-DSD gondas than those in normal sows. Taken together, we proposed that the balance of endocrine had broken in XX-DSD pigs. The current study is the first to examine the transcriptomic profile in the hypothalamus of XX-DSD pigs. It provides new insight into coding and non-coding RNAs that may be associated with DSD in pigs.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Hipotálamo/fisiologia , MicroRNAs/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Animais , Transtornos do Desenvolvimento Sexual/veterinária , Feminino , Perfilação da Expressão Gênica , Mapas de Interação de Proteínas/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Receptores do FSH/genética , Proteína da Região Y Determinante do Sexo/genética , Suínos , Doenças dos Suínos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...